Screen Shot 2018-08-24 at 12.36.17 PM.png

Research Highlights

View selected research achievements of MIT faculty and staff over the last five decades.

The following are selected research achievements of MIT faculty and staff over the last five decades.

1967 Joel Moses, William A. Martin, and others develop MACSYMA, a computer program that manipulates algebraic quantities and performs symbolic integration and differentiation.

1968 Radar-based lunar studies are performed by Lincoln Laboratory. The use of radar to map the surface of the moon becomes possible when the radar beam is made small enough to discriminate between two points on the surface that would contribute echoes at the same range and Doppler shift. Altitude data is added to the two-dimensional radar reflectivity data by the use of interferometry. In addition, from the strength of radar reflections, it is estimated that the lunar surface has weight-bearing properties similar to that of terrestrial sand.

1969 Ioannis V. Yannas begins to develop artificial skin—a material used successfully to treat burn victims.

1970 David Baltimore reports the discovery of reverse transcriptase, an enzyme that catalyzes the conversion of RNA to DNA. The advance, which led to a Nobel Prize for Baltimore in 1975, provided a new means for studying the structure and function of genes.

1972 Lincoln Laboratory’s Moving Target Detector (MTD) achieved a new performance level for the detection of aircraft in the presence of radar clutter, such as ground, weather, and birds. It employed an antenna with two fan beams to provide coverage from the immediate vicinity of an airport to a distance of 60 nautical miles. The MTD became the world-recognized standard for Airport Surveillance Radar.

1973 Jerome Friedman and Henry Kendall, with Stanford colleague Richard Taylor, complete a series of experiments confirming the theory that protons and neutrons are made up of minute particles called quarks. The three receive the 1990 Nobel Prize in Physics for their work.

1974 Samuel C. C. Ting, Ulrich Becker, and Min Chen discover the “J” particle. The discovery, which earns Ting the 1976 Nobel Prize in Physics, points to the existence of one of the six postulated types of quarks.

1975 The Lincoln Laboratory Experimental Test System (ETS) becomes operational. The ETS is used for deep-space surveillance, daylight satellite tracking, searching the geostationary belt, and making astronomical measurements.

1975–1977 Barbara Liskov and her students design the CLU programming language, an object-oriented language that helps form the underpinnings for languages like Java and C++. As a result of this work and other accomplishments, Liskov later wins the Turing Award, considered the Nobel Prize in computing.

1975–1982 Joel Moses develops the first extensive computerized program (MACSYMA) able to manipulate algebraic quantities and perform symbolic integration and differentiation.

1976 H. Gobind Khorana and his research team complete chemical synthesis of the first human-manufactured gene fully functional in a living cell. The culmination of 12 years of work, it establishes the foundation for the biotechnology industry. Khorana won the 1968 Nobel Prize in Physiology/Medicine for other genetics work.

1977 Phillip Sharp discovers the split gene structure of higher organisms, changing the view of how genes arose during evolution. For this work, Sharp shared the 1993 Nobel Prize in Physiology/Medicine.

1977 Ronald Rivest, Adi Shamir, and Leonard Adleman invent the first workable public key cryptographic system. The new code, which is based on the use of very large prime numbers, allows secret communication between any pair of users. Still unbroken, the code is in widespread use today.

1979 The high frame rate required for airborne laser radar demands an array of photomixers, and Lincoln Laboratory begins a design study in binary optics for a solution. A hologram is proposed to generate an array of beams with the amplitude and phase distributions necessary to ensure efficient photomixing.

1979 Robert Weinberg reports isolating and identifying the first human oncogene—an altered gene that causes the uncontrolled cell growth that leads to cancer.

1981 Alan Guth publishes the first satisfactory model, called cosmic inflation, of the universe’s development in the first 10–32 seconds after the Big Bang.

1982 Alan Davison discovers a new class of technetium compounds that leads to the development of the first diagnostic technetium drug for imaging the human heart.

1982 Lincoln Laboratory utilizes a new generation of digital signal processing chips to develop a compact linear predictive coding (LPC) vocoder small and inexpensive enough for wide distribution. A vocoder analyzes and synthesizes speech using parameters that can be encrypted and transmitted at a much lower bit rate than the original speech waveform. The LPC vocoder is important in the U.S. development of secure voice systems.

1985 Susumu Tonegawa describes the structure of the gene for the receptors—“anchor molecules”—on the white blood cells called T lymphocytes, the immune system’s master cells. In 1987, Tonegawa receives the Nobel Prize in Physiology/Medicine for similar work on the immune system’s B cells.

1985 The Terminal Doppler Weather Radar (TDWR) program is initiated at Lincoln Laboratory to develop an automated system for detecting weather hazards in the airport terminal area and to help pilots avoid them. A successful TDWR prototype led to the procurement of 47 TDWRs from Raytheon in the 1990s, and there has not been a major U.S. wind-shear-related accident since 1994.

1986 Stephen Benton creates the first free-standing hologram. In 1985, Benton began generating synthetic holograms from 3D digital databases, initially creating a 3D image of a green car floating in front of the Boston skyline.

1986 H. Robert Horvitz identifies the first two genes found to be responsible for the process of cell death, which is critical both for normal body development and for protection against autoimmune diseases, cancer, and other disorders. Going on to make many more pioneering discoveries about the genetics of cell death, Horvitz shares the 2002 Nobel Prize in Physiology/Medicine for his work.

1988 Project Daedalus sets distance and endurance records for human-powered aircraft in a flight over the Aegean Sea.

1988 Sallie Chisholm and associates report the discovery of a form of ocean plankton that may be the most abundant single species on earth.

1989 The Airport Surveillance Radar (ASR)-9, developed at Lincoln Laboratory, provides air traffic control (ATC) personnel with a display free of clutter and a telephone bandwidth data stream for transmitting information to ATC facilities. The technology was later transferred to Westinghouse Corporation, which deployed the ASR-9 at 137 sites in the U.S. for the Federal Aviation Administration.

1990 Julius Rebek, Jr. and associates create the first self-replicating synthetic molecule.

1990 Building on the discovery of the metathesis—the process of cutting carbon-carbon double bonds in half and constructing new ones—Richard Schrock devises a catalyst that greatly speeds up the reaction, consumes less energy, and produces less waste. A process based on his discovery is now in widespread use for efficient and more environmentally friendly production of important pharmaceuticals, fuels, synthetic fibers, and many other products. Schrock shares the 2005 Nobel Prize in Chemistry for his breakthrough.

1991 Cleveland heart doctors begin clinical trials of a laser catheter system for microsurgery on the arteries that is largely the work of Michael Feld and his MIT associates.

1992 The Lincoln Laboratory Microelectronics Laboratory becomes operational. It is a 70,000 sq ft state-of-the-art semiconductor research and fabrication facility supporting a wide range of programs: flight-quality gigapixel charge-coupled device (CCD) imager focal planes, photon-counting avalanche photodiode arrays, and niobium-based superconducting circuits, to name a few. The Microelectronics Laboratory also supports advanced packaging with a precision multichip module technology and an advanced three-dimensional circuit stacking technology.

1993 H. Robert Horvitz, together with scientists at Massachusetts General Hospital, discover an association between a gene mutation and the inherited form of amyotrophic lateral sclerosis (Lou Gehrig’s disease).

1993 David Housman joins colleagues at other institutions in announcing a successful end to the long search for the genetic defect linked with Huntington’s disease.

1993 Alexander Rich and postdoctoral fellow Shuguang Zhang report the discovery of a small protein fragment that spontaneously forms into membranes. This research will lead to advances in drug development, biomedical research, and the understanding of Alzheimer’s and other diseases.

1993 The Traffic Alert and Collision Avoidance System (TCAS) is deployed. TCAS reduces midair collisions by sensing nearby aircraft and issuing an advisory to the pilot. Lincoln Laboratory developed the surveillance technology used by TCAS and built and flight-tested the TCAS prototype. Now mandated on all large transport aircraft, TCAS has been in operation for over a decade and has been credited with preventing several catastrophic accidents.

1994 MIT engineers develop a robot that can “learn” exercises from a physical therapist, guide a patient through them, and, for the first time, record biomedical data on the patient’s condition and progress.

1995 The Advanced Land Imager (ALI) is developed at Lincoln Laboratory to validate new technologies that (1) could be utilized in future land-observing satellites and (2) would reduce mass, size, and power consumption while improving instrument sensitivity and image resolution.

1995 Scientists at the Whitehead Institute for Biomedical Research and MIT create a map of the human genome and begin the final phase of the Human Genome Project. This powerful map contains more than 15,000 distinct markers and covers virtually all of the human genome.

1996 A group of scientists at MIT’s Center for Learning and Memory, led by Matthew Wilson and Nobel laureate Susumu Tonegawa, use new genetic and multiple-cell monitoring technologies to demonstrate how animals form memory about new environments.

1997 MIT physicists create the first atom laser, a device that is analogous to an optical laser but emits atoms instead of light. The resulting beam can be focused to a pinpoint or made to travel long distances with minimal spreading.

1998 MIT biologists, led by Leonard Guarente, identify a mechanism of aging in yeast cells that suggests researchers may one day be able to intervene in, and possibly inhibit, the aging process in certain human cells.

1998 Lincoln Near Earth Asteroid Research (LINEAR) is developed by Lincoln Laboratory to detect and catalogue near-Earth asteroids that may threaten Earth. Applying technology originally developed for the surveillance of Earth-orbiting satellites, LINEAR uses two ground-based electro-optical deep-space surveillance telescopes.

1998 An interdisciplinary team of MIT researchers, led by Yoel Fink and Edwin L. Thomas, invent the “perfect mirror,” which offers radical new ways of directing and manipulating light. Potential applications range from a flexible light guide that can illuminate specific internal organs during surgery to new devices for optical communications.

1999 Michael Cima, Robert Langer, and graduate student John Santini report the first microchip that can store and release chemicals on demand. Among its potential applications is a “pharmacy” that could be swallowed or implanted under the skin and programmed to deliver precise drug dosages at specific times.

1999 Alexander Rich leads a team of researchers in the discovery that left-handed DNA (also known as Z-DNA) is critical for the creation of important brain chemicals. Having first produced Z-DNA synthetically in 1979, Rich succeeds in identifying it in nature in 1981. He also discovers its first biological role and received the National Medal of Science for this pioneering work in 1995.

2000 Scientists at the Whitehead Institute/MIT Center for Genome Research and their collaborators announce the completion of the Human Genome Project. Providing about a third of all the sequences assembled, the Center was the single largest contributor to this international enterprise.

2000 Researchers develop a device that uses ultrasound to extract a number of important molecules noninvasively and painlessly through the skin. They expect that the first application will be a portable device for noninvasive glucose monitoring for diabetics.

2000 Researchers from the MIT Sloan School of Management launch the Social and Economic Explorations of Information Technology (SeeIT) Project, the first empirical study of the effects of information technology (IT) on organizational and work practices. Examining IT’s relationship to changes in these models, SeeIT provides practical data for understanding and evaluating IT’s business and economic effects, which will enable us to take full advantage of its opportunities and better control its risks.

2001 In a step toward creating energy from sunlight as plants do, Daniel Nocera and a team of researchers invent a compound that, with the help of a catalyst and energy from light, produces hydrogen.

2002 MIT researchers create the first acrobatic robotic bird—a small, highly agile helicopter for military use in mountain and urban combat.

2002–2005 Scientists at MIT, the Whitehead Institute for Biomedical Research, and the Broad Institute complete the genomes of the mouse, the dog, and four strains of phytoplankton, photosynthetic organisms that are critical for the regulation of atmospheric carbon dioxide. They also identify the genes required to create a zebrafish embryo. In collaboration with scientists from other institutions, they map the genomes of chimpanzees, humans’ closest genetic relative, and the smallest known vertebrate, the puffer fish.

2003 Enhanced Regional Situation Awareness (ERSA) system is developed by Lincoln Laboratory for the U.S. Air Force to provide improved defense of the airspace surrounding the National Capital Region (NCR). ERSA capabilities have improved airspace surveillance, threat assessment and decision support, distribution of a common air picture to multiple agencies, and new ways to respond to aircraft violating the NCR airspace.

2003 MIT scientists cool a sodium gas to the lowest temperature ever recorded—a half-a-billionth of a degree above absolute zero. Studying these ultra-low temperature gases will provide valuable insights into the basic physics of matter; and by facilitating the development of better atomic clocks and sensors for gravity and rotation, they also could lead to vast improvements in precision measurements.

2004 MIT’s Levitated Dipole Experiment, a collaboration among scientists at MIT and Columbia, generates a strong dipole magnetic field that enables them to experiment with plasma fusion, the source of energy that powers the sun and stars, with the goal of producing it on Earth. Because the hydrogen that fuels plasma fusion is practically limitless and the energy it produces is clean and doesn’t contribute to global warming, fusion power will be of enormous benefit to humankind and to earth systems in general.

2004 A team, led by neuroscientist Mark Bear, illuminates the molecular mechanisms underlying Fragile X Syndrome and shows that it might be possible to develop drugs that treat the symptoms of this leading known inherited cause of mental retardation, whose effects range from mild learning disabilities to severe autism.

2004 Shuguang Zhang, Marc A. Baldo, and recent graduate Patrick Kiley, first figure out how to stabilize spinach proteins—which, like all plants, produce energy when exposed to light—so they can survive without water and salt. Then, they devise a way to attach them to a piece of glass coated with a thin layer of gold. The resulting spinach-based solar cell, the world’s first solid-state photosynthetic solar cell, has the potential to power laptops and cell phones with sunlight.

2005 MIT physicists, led by Nobel laureate Wolfgang Ketterle, create a new type of matter, a gas of atoms that shows high-temperature superfluidity.

2005 Vladimir Bulovic and Tim Swager develop lasing sensors based on a semiconducting polymer that is able to detect the presence of TNT vapor subparts per billion concentrations.

2006 MIT launches the MIT Energy Initiative (MITEI) to address world energy problems. Led by Ernest J. Moniz and Robert C. Armstrong, MITEI coordinates energy research, education, campus energy management, and outreach activities across the Institute.

2007 Rudolf Jaenisch, of the Whitehead Institute for Biomedical Research, conducts the first proof-of-principle experiment of the therapeutic potential of induced pluripotent stem cells (iPS cells), using iPS cells reprogrammed from mouse skin cells to cure a mouse model of human sickle-cell anemia. Jaenisch would then use a similar approach to treat a model of Parkinson’s disease in rats.

2007 Marin Soljačić and his colleagues develop a new form of wireless power transmission they call WITricity. It is based on a strongly coupled magnetic resonance and can be used to transfer power over distances of a few meters with high efficiency. The technique could be used commercially to wirelessly power laptops, cell phones, and other devices.

2007 David H. Koch ’62, SM ’63 gives MIT $100 million to create the David H. Koch Institute for Integrative Cancer Research. The Koch Institute opens in 2011. It brings together molecular geneticists, cell biologists, and engineers in a unique multi-disciplinary approach to cancer research.

2007 Tim Jamison discovers that cascades of epoxide-opening reactions that were long thought to be impossible can very rapidly assemble the Red Tide marine toxins when they are induced by water. Such processes may be emulating how these toxins are made in nature and may lead to a better understanding of what causes devastating Red Tide phenomena. These methods also open up an environmentally green synthesis of new classes of complex highly biologically active compounds.

2007 MIT mathematicians form part of a group of 18 mathematicians from the U.S. and Europe that maps one of the most complicated structures ever studied: the exceptional Lie group E8. The “answer” to the calculation, if written, would cover an area the size of Manhattan. The resulting atlas has applications in the fields of string theory and geometry.

2008 Mriganka Sur’s laboratory discovers that astrocytes, star-shaped cells in the brain that are as numerous as neurons, form the basis for functioning brain imaging. Using ultra high-resolution imaging in the intact brain, they demonstrate that astrocytes regulate blood flow to active brain regions by linking neurons to brain capillaries.

2008 A team, led by Marc A. Baldo, designs a solar concentrator that focuses light at the edges of a solar power cell. The technology can increase the efficiency of solar panels by up to 50 percent, substantially reducing the cost of generating solar electricity.

2008 Daniel Nocera creates a chemical catalyst that hurdles one of the obstacles to widespread use of solar power—the difficulty of storing energy from the sun. The ca­talyst, which is cheap and easy to make, uses the energy from sunlight to separate the hydrogen and oxygen molecules in water. The hydrogen can then be burned, or used to power an electric fuel cell.

2009 Lincoln Laboratory develops and demonstrates the Lincoln Distributed Disaster Response System, which enables information from airborne platforms, distributed weather stations, GPS-enabled devices, and other sources to be shared by responders at the emergency command centers and by those equipped with ruggedized laptops at the front lines. The system design initially focuses on fighting a large-scale fire but is also applicable for any large-scale disaster response.

2009 A team of MIT researchers, led by Angela Belcher, reports that it is able to genetically engineer viruses to produce both the positively and negatively charged ends of a lithium-ion battery. The battery has the same energy capacity as those being considered for use in hybrid cars, but is produced using a cheaper, less environmentally hazardous process. MIT President Susan Hockfield presents a prototype battery to President Barack Obama at a press briefing at the White House.

2009 Researchers at MIT’s Picower Institute for Learning and Memory show for the first time that multiple interacting genetic risk factors may influence the severity of autism symptoms. The finding could lead to therapies and diagnostic tools that target the interacting genes.

2009 Gerbrand Ceder and graduate student Byoungwoo Kang develop a new way to manufacture the material used in lithium ion batteries that allows ultrafast charging and discharging. The new method creates a surface structure that allows lithium ions to move rapidly around the outside of the battery. Batteries built using the new method could take seconds, rather than the now standard hours, to charge.

2009 Li-Huei Tsai’s laboratory describes mechanisms that underlie Alzheimer’s disease and propose that inhibition of histone deacetylases is therapeutic for degenerative disorders of learning and memory. Her laboratory also discovers the mechanisms of action of the gene Disrupted-in-Schizophrenia 1 and demonstrates why drugs such as lithium are effective in certain instances of schizophrenia. This research opens up pathways to discovering novel classes of drugs for devastating neuropsychiatric conditions.

2010 A new approach to desalination is being developed by researchers at MIT and in Korea that could lead to small, portable desalination units that could be powered by solar cells or batteries and could deliver enough fresh water to supply the needs of a family or small village. As an added bonus, the system would remove many contaminants, viruses, and bacteria at the same time.

2010 Yang Shao-Horn, with some of her students, and visiting professor Hubert Gasteiger report that lithium-oxygen (also known as lithium-air) batteries with electrodes with either gold or platinum as a catalyst have a higher efficiency than simple carbon electrodes. Lithium-air batteries are lighter than the conventional lithium-ion batteries.

2010 A team at the Media Lab, including Ramesh Raskar, visiting professor Manuel Oliveira, student Vitor Pamplona, and postdoctoral research associate Ankit Mohan, create a new system to determine a prescription for eyeglasses. In its simplest form, the test can be carried out using a small plastic device clipped onto the front of a cellphone’s screen.

2010 MIT releases The Future of Natural Gas report. The two-year study, managed by the MIT Energy Initiative, examines the scale of U.S. natural gas reserves and the potential of this fuel to reduce greenhouse-gas emissions. While the report emphasizes the great potential for natural gas as a transitional fuel to help curb greenhouse gases and dependence on oil, it also stresses that it is important as a matter of national policy not to favor any one fuel or energy source in a way that puts others at a disadvantage.

2010 Michael Strano and his team of graduate students and researchers create a set of self-assembling molecules that can turn sunlight into electricity; the molecules can be repeatedly broken down and reassembled quickly just by adding or removing an additional solution.

2010 Lincoln Laboratory developed the Space Surveillance Telescope (SST), an advanced ground-based optical system designed to enable detection and tracking of faint objects in space while providing rapid, wide-area search capability. The SST combines innovative curved charge-coupled device imager technology developed at Lincoln Laboratory with a very wide field-of-view, large-aperture (3.5 meter) telescope. The system is installed at the Atom Site on the White Sands Missile Range in New Mexico being evaluated for detection and tracking of microsatellites before being transitioned to Space Surveillance Network.

2011 Elazer Edelman, graduate student Joseph Franses, and former postdoctoral fellows Aaron Baker and Vipul Chitalia show that cells lining blood vessels secrete molecules that suppress tumor growth and prevent cancer cells from invading other tissues, a finding that could lead to a new cancer treatment.

2011 The Alpha Magnetic Spectrometer (AMS)—an instrument designed to use the unique environment of space to search for antimatter and dark matter and to measure cosmic rays—is delivered to the International Space Station. The AMS experiment, led by Samuel C. C. Ting, is designed to study high-energy particles; such study could lead to new theories about the formation and evolution of the universe.

2011 A team, including Karen Gleason, Vladimir Bulović, and graduate student Miles Barr, develops materials that make it possible to produce photovoltaic cells on paper or fabric, nearly as simply as printing a document. The technique represents a major departure from the systems typically used to create solar cells, which require exposing the substrates to potentially damaging conditions, either in the form of liquids or high temperatures.

2011 By combining a physical interface with computer-vision algorithms, researchers in the Department of Brain and Cognitive Sciences create a simple, portable imaging system that can achieve resolutions previously possible only with large and expensive lab equipment. The device could allow manufacturers to inspect products too large to fit under a microscope and could also have applications in medicine, forensics, and biometrics. Moreover, because the design uses multiple cameras, it can produce 3D models of an object, which can be manipulated on a computer screen for examination from multiple angles.

2011 Researchers, led by Daniel Nocera, have produced an “artificial leaf”—a silicon solar cell with different catalytic materials bonded onto its two sides. The artificial leaf can turn the energy of sunlight directly into a chemical fuel that can be stored and used later as an energy source.

2012 NASA’s Gravity Recovery And Interior Laboratory (GRAIL) twin spacecraft successfully enters lunar orbit. By precisely measuring changes in distance between the twin orbiting spacecraft, scientists will construct a detailed gravitational model of the moon that will be used to answer fundamental questions about the moon’s evolution and its internal composition. GRAIL’s principal investigator is Maria Zuber.

2012 Researchers, including Jeffrey Grossman, discover that building cubes or towers of solar cells—to extend the cells upward in three-dimensional configurations—generates two to 20 times the power produced by fixed flat panels with the same base area.

2012 Researchers, led by Ian Hunter, have engineered a device that delivers a tiny, high-pressure jet of medicine through the skin without the use of a hypodermic needle. The device can be programmed to deliver a range of doses to various depths—an improvement over similar jet-injection systems that are now commercially available.

2012 A clinical trial of an Alzheimer’s disease treatment developed at MIT finds that a nutrient cocktail can improve memory in patients with early Alzheimer’s. Richard Wurtman invented the supplement mixture, known as Souvenaid, which appears to stimulate growth of new synapses.

2012 Researchers, including Young Lee and PhD graduate Tianheng Han, have followed up on earlier theoretical predictions and demonstrated experimentally the existence of a fundamentally new magnetic state called a quantum spin liquid (QSL), adding to the two previously known states of magnetism. The QSL is a solid crystal, but its magnetic state is described as liquid: Unlike the other two kinds of magnetism, the magnetic orientations of the individual particles within it fluctuate constantly, resembling the constant motion of molecules within a true liquid.

2012 Lincoln Laboratory developed a laser communications system to demonstrate high-data-rate communications between a lunar-orbiting NASA satellite and a ground site in the United States. The Lunar Laser Communications Demonstration addresses NASA’s need for very-high-rate, very-long-distance communications systems small enough to fly in space. It transmits over 600 megabits per second using only a 4-inch telescope and a 1/2-watt laser installed on the satellite. The ground receiver is nearly ten times more efficient than any optical receiver ever demonstrated at these high rates.

2013 A new steelmaking process developed by researchers, Donald Sadoway, Antoine Allanore, and former postdoc Lan Yin, produces no emissions other than pure oxygen and carries nice side benefits: The resulting steel should be of higher purity, and eventually, once the process is scaled up, cheaper.

2013 A research team, led by Yuriy Román, has devised a cheaper way to synthesize a key biofuel component, which could make its industrial production much more cost-effective. The compound, known as gamma-valerolactone (GVL), has more energy than ethanol and could be used on its own or as an additive to other fuels. GVL could also be useful as a “green” solvent or a building block for creating renewable polymers from sustainable materials.

2013 A system being developed by Dina Katabi and her graduate student Fadel Adib, could give us the ability to see people through walls using low-cost Wi-Fi technology. The system, called “Wi-Vi,” is based on a concept similar to radar and sonar imaging. But in contrast to radar and sonar, it transmits a low-power Wi-Fi signal and uses its reflections to track moving humans.

2013 Hydrophobic materials—water-shedding surfaces—have a theoretical limit on the time it takes for a water droplet to bounce away from such a surface. Researchers, led by Kripa Varanasi, have found a way to burst through that perceived barrier, reducing the contact time by at least 40 percent. This research could aid ice prevention, wing efficiency, and more.

2014 Lincoln Laboratory develops PANDA (Platform for Architecture-Neutral Dynamic Analysis) enabling software analysts to simplify the analysis and understanding of complex software systems for cyber analysis and threat protection. PANDA allows analysts to quickly develop instrumentation that can help answer complex questions about software and inform appropriate responses. Software developers and analysts can move toward automating tasks that would otherwise be manual, tedious, time-consuming, and costly.

2014 Platinum-group metals can be considered unsustainable resources that are needed catalysts to enable renewable energy technologies. Graduate student Sean Hunt, postdoc Tarit Nimmandwudipong, and Yuriy Román have devised a process of synthesizing renewable alternative catalysts.

2014 Engineers at MIT and Lawrence Livermore National Laboratory (LLNL) have devised a way to translate that airy, yet remarkably strong, structure style of the Eiffel Tower down to the microscale—designing a system that could be fabricated from a variety of materials, such as metals or polymers, and that may set new records for stiffness for a given weight. Nicholas Fang, former postdoc Howon Lee, visiting research fellow Qi “Kevin” Ge, LLNL’s Christopher Spadaccini and Xiaoyu “Rayne” Zheng are among the researchers involved in the project.

2014 Researchers, including Gang Chen and postdoc Hadi Ghasemi, have developed a new material structure—a layer of graphite flakes and an underlying carbon foam—that generates steam by soaking up the sun. The material is able to convert 85 percent of incoming solar energy into steam—a significant improvement over recent approaches to solar-powered steam generation. The setup loses very little heat in the process, and can produce steam at relatively low solar intensity.

2014 Bryan Hsu PhD ’14 and Paula Hammond, working with Myoung-Hwan Park of Shamyook University in South Korea and Samantha Hagerman ’14, have developed a new drug-delivery system method that could enable pain medication and other drugs to be released directly to specific parts of the body. The method uses biodegradable, nanoscale “thin films” laden with drug molecules that are absorbed into the body in steady doses over a period of up to 14 months.

2014 Researchers at MIT, including John Foster, and at the University of Colorado, including Daniel Baker, and elsewhere have found there’s a hard limit to how close ultrarelativistic electrons can get to the Earth. The team found that no matter where these electrons are circling around the planet’s equator, they can get no further than about 11,000 kilometers from the Earth’s surface—despite their intense energy.

2015 Natalie Artzi and Elazer Edelman, working with other researchers, found that a tissue adhesive they had previously developed worked much differently in cancerous colon tissue than in colon tissue inflamed with colitis. The finding suggests that scientists must take into account the environment in which the material will be used, instead of using a “one-size fits all” approach for this sealant, or any other kind of biomaterial, designed to work inside the human body.

2015 MACHETE, a state-of-the-art airborne lidar system that performs high-resolution, 3D imaging at an area collection rate an order of magnitude higher than other lidar systems, was developed by Lincoln Laboratory. The system is highly optimized for foliage-penetration applications; it can image through dense canopy to reveal structures at and near ground level. The system employs advanced single-photon-counting Geiger-mode avalanche detector array technology, and an ultra-short pulsed laser and gimbaled pointing system to deliver high-altitude, high-resolution 3D imaging.

2015 Kimberly Hamad-Schifferli and Lee Gehrke are among the researchers that have devised a new diagnostic test that is a simple paper strip similar to a pregnancy test, that can rapidly diagnose Ebola, as well as other viral hemorrhagic fevers such as yellow fever and dengue fever. Unlike most existing paper diagnostics, which test for only one disease, the new MIT strips are color-coded so they can be used to distinguish among several diseases.

2015 Research conducted by Polina Anikeeva, graduate student Ritchie Chen, postdoc Gabriela Romero, graduate student Michael Christiansen, and undergraduate Alan Mohr has developed a method to stimulate brain tissue using external magnetic fields and injected magnetic nanoparticles—a technique allowing direct stimulation of neurons, which could be an effective treatment for a variety of neurological diseases, without the need for implants or external connections.

2015 Plants achieve efficienct energy transport by making use of the exotic effects of quantum mechanics—effects sometimes known as “quantum weirdness.” These effects, which include the ability of a particle to exist in more than one place at a time, have now been used by engineers to achieve a significant efficiency boost in a light-harvesting system. Researchers at MIT, including Angela Belcher and Seth Lloyd, and Eni, the Italian energy company, use engineered viruses to provide quantum-based enhancement of energy transport to mimic photosynthesis.

2015 MIT engineers have designed what may be the Band-Aid of the future: a sticky, stretchy, gel-like material that can incorporate temperature sensors, LED lights, and other electronics, as well as tiny, drug-delivering reservoirs and channels. The “smart wound dressing” releases medicine in response to changes in skin temperature and can be designed to light up if, say, medicine is running low. The key to the design is a hydrogel matrix designed by Xuanhe Zhao.

2016 A new advance from MIT, Boston Children’s Hospital, and several other institutions may offer a better treatment for Type 1 diabetes, which leaves patients without the ability to naturally control blood sugar by damaging the pancreas. Replacing patients’ destroyed pancreatic islet cells with healthy cells is a treatment with one major drawback—the patients’ immune systems attack the transplanted cells—requiring patients to take immunosuppressant drugs for the rest of their lives. The researchers, including Daniel Anderson, have designed a material that can be used to encapsulate human islet cells before transplanting them without provoking an immune response.

2016 Scientists have observed ripples in the fabric of spacetime called gravitational waves, arriving at the Earth from a cataclysmic event in the distant universe. This confirms a major prediction of Albert Einstein’s 1915 general theory of relativity. Physicists have concluded that the detected gravitational waves are produced during the final fraction of a second of the merger of two black holes to produce a single, more massive spinning black hole. The first gravitational waves were detected on Sept. 14, 2015 at 5:51 a.m. Eastern Daylight Time (09:51 UTC) by both of the twin Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors, located in Louisiana and Washington, USA. Scientists detected gravitational waves for a second time on Dec. 26, 2015. The LIGO Observatories were conceived, built, and are operated by Caltech and MIT. The discovery was made by the LIGO Scientific Collaboration and the Virgo Collaboration using data from the two LIGO detectors.

2016 Scientists at MIT, including Susan Solomon and research scientist Diane Ivy, and elsewhere have identified signs that the Antarctic ozone layer has shrunk by more than 4 million square kilometers—about half the area of the contiguous United States—since 2000, when ozone depletion was at its peak. The team also showed for the first time that this recovery has slowed somewhat at times, due to the effects of volcanic eruptions from year to year. The team used “fingerprints” of the ozone changes with season and altitude to attribute the ozone’s recovery to the continuing decline of atmospheric chlorine originating from chlorofluorocarbons (CFCs).

2016 On Friday, Sept. 30, 2016, at 9:25 p.m. EDT, scientists and engineers at MIT’s Plasma Science and Fusion Center made a leap forward in the pursuit of clean energy. The team set a new world record for plasma pressure in the Institute’s Alcator C-Mod tokamak nuclear fusion reactor. Plasma pressure is the key ingredient to producing energy from nuclear fusion, and MIT’s new result achieves over 2 atmospheres of pressure for the first time.

2017 MIT physicists, led by Wolfgang Ketterle, have created a new form of matter, a supersolid, which combines the properties of solids with those of superfluids. By using lasers to manipulate a superfluid gas known as a Bose-Einstein condensate, the team was able to coax the condensate into a quantum phase of matter that has a rigid structure—like a solid—and can flow without viscosity—a key characteristic of a superfluid.

2017 A team of scientists from MIT and Harvard have adapted a CRISPR protein that targets RNA (rather than DNA), for use as a rapid, inexpensive, highly sensitive diagnostic tool with the potential to transform research and global public health. Feng Zhang, Jim Collins, Deb Hung, Aviv Regev, and Pardis Sabeti describe how this RNA-targeting CRISPR enzyme was harnessed as a highly sensitive detector—able to indicate the presence of as little as a single molecule of a target RNA or DNA. The new tool, SHERLOCK (Specific High-sensitivity Enzymatic Reporter unLOCKing), could one day be used to respond to viral and bacterial outbreaks, monitor antibiotic resistance, and detect cancer.

2017 MIT researchers have developed a new system to help visually impaired users to navigate. The system uses a 3D camera, a processing unit that runs the team’s proprietary algorithms, a belt with separately controllable vibrational motors distributed around it, and an electronically reconfigurable Braille interface to give visually impaired users more information about their environments. The belt motors can vary the types of vibrations, as well as the intervals between them, to send different types of tactile signals to the user. For instance, an increase in frequency and intensity generally indicates that the wearer is approaching an obstacle in the direction indicated by that particular motor.

2017 For the first time, scientists have directly detected gravitational waves—ripples in space-time—in addition to light from the spectacular collision of two neutron stars. This marks the first time that a cosmic event has been viewed in both gravitational waves and light. The discovery was made using the U.S.-based Laser Interferometer Gravitational-Wave Observatory (LIGO); the Europe-based Virgo detector; and some 70 ground- and space-based observatories. The LIGO observatories were conceived, constructed, and operated by Caltech and MIT. Virgo is operated by the European Gravitational Observatory.

2018 A team from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), including PhD candidate Robert Katzschmann and CSAIL director Daniela Rus, unveiled “SoFi,” a soft robotic fish that can independently swim alongside real fish in the ocean. Using its undulating tail and a unique ability to control its own buoyancy, SoFi can swim in a straight line, turn, or dive up or down. During test dives in Fiji, SoFi swam at depths of more than 50 feet for up to 40 minutes at once, nimbly handling currents and taking high-resolution photos and videos.

2018 MIT researchers, including Fadel Adib, working with scientists from Brigham and Women’s Hospital, have developed a way to power and communicate with devices implanted within the human body. The implants have no batteries and are powered by radio frequency waves, which can safely pass through human tissues. In tests in animals, the researchers showed that the waves can power devices located 10 centimeters deep in tissue, from a distance of 1 meter. The prototype is about the size of a grain of rice. Such devices could be used to deliver drugs, monitor conditions inside the body, or treat disease by stimulating the brain with electricity or light.

2018 Scientists at MIT and elsewhere have analyzed data from K2, the follow-up mission to NASA’s Kepler Space Telescope, and have discovered nearly 80 new planetary candidates, including a particular standout: a likely planet that orbits the star HD 73344, which would be the brightest planet host ever discovered by the K2 mission. Assistant professor Ian Crossfield co-led the study with graduate student Liang Yu. The new analysis is also noteworthy for the speed with which it was performed. The researchers were able to use tools developed at MIT to rapidly search through graphs of light intensity called “lightcurves” from each of the 50,000 stars that K2 monitored in its two recent observing campaigns. They quickly identified the planetary candidates and released the information to the astronomy community just weeks after the K2 mission made the spacecraft’s raw data available. A typical analysis of this kind takes between several months and a year.

2018 A team at MIT, including Kripa Varanasi and Karen Gleason, has come up with a coating that adds water-repellency to natural fabrics and outperforms conventional materials in water-repellency tests. The coated materials have been subjected to repeated washings with no degradation of the coatings, and also have passed severe abrasion tests, with no damage to the coatings after 10,000 repetitions. The process could offer a nontoxic alternative to environmentally harmful chemicals and also works on nonfabric materials such as paper.

2019 An international team of over 200 scientists, including researchers from MIT’s Haystack Observatory and the MIT campus, capture the first direct image of a black hole. The images were taken by the Event Horizon Telescope (EHT) a planet-scale array comprised of eight radio telescopes spread throughout the globe. EHT was conceived by Sheperd Doeleman while leading a pioneering VLBI program at the Haystack Observatory and enabled by advances in digital systems created by Haystack engineers.